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1. I N T R O D U C T I O N  

The authors of the present communication have previously published a paper (Drew & Lahey 1987) 
concerning the question of objectivity associated with the virtual mass and lift forces on a sphere 
imbedded in a rotating and straining inviscid flow. In that paper, the virtual mass and lift forces 
were calculated, and the sum of these two forces was shown to be objective, as required by the 
Principle of Material Frame Indifference (Truesdell & Toupin 1963); however, the individual terms 
need not be objective. 

Unfortunately, subsequent to the publication of this paper (Drew & Lahey 1987), it was pointed 
out to the authors (Acrivos 1987) that a fundamental error had been made in the derivation, 
thereby affecting the conclusion. In particular, the assumption that the vorticity (~ was identically 
zero in the rotating frame, leading to [15] in that paper, was incorrect. The correct result is that 
if the vorticity is initially zero, and the shear in the far field is small, then the vorticity remains 
small for some time, and the results are approximately valid. In addition, there is an inconsistency 
in notation in the previous paper defining the velocities in the various coordinate frames. 

It is the purpose of this communication to amend the analysis to correct the error. Moreover, 
it will be shown in what sense the final results and conclusions reached in the previous paper are 
valid. 

The velocity of the fluid far from the sphere is 

v *~ = v* +eiy xy + EijktOj Xk [1] 

[v *°:' is simply called v* in Drew & Lahey (1987)]. The coordinates are rotated according to 

xi = Qox*,  

where the rotation tensor Qu is chosen to eliminate rotation from vc~., i.e. 

~0" = - Q;k~k,.jm*. 

This gives 

[2] 

[3] 

where 

v~ = Voi + e~xj, [4] 

and 

v~ = Qqv~ 

e 0 = Q~kQjtek*. 
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2. EFFECTS OF V O R T I C I T Y  

The equations of motion in a rotating frame (Greenspan 1968) are 

v,.~ = 0 [5] 

v,., - C~k Vj~ k + 2CijkOOjv k = -- P , i ,  [61 

where ~i = %kVk./ is the vorticity and 

p P .4_ IlYily i 1 . 2 z .  2 = - -  - ~  t ~ ,  + x2) .  [7] 
Pc 

The Helmholtz representation for the velocity is 

v, = c~.~ + EijkA~,~ = 4~.~ + v; [8] 

where q~ is the velocity potential, v; = %~Ak, j ,  and Ak is a vector field with Ak.k = 0. Hence the 
vorticity ~, is given by 

~, = - A , . j j .  [9] 

The equation for the vorticity can be derived by taking %k( )j.k of  the momentum equation [7]. 
We have 

(,,, + vj~,,j - (2o~j + Cj)v,.j = 0. [10] 

Here we note that [unlike the assumption made in [15] in Drew & Lahey (1987)], ~i ~ 0. We further 
note that the vorticity ~g is determined from an evolution equation, so that an initial condition is 
needed for it. We take, as did Proudman (1916), 

~i(x, o) = 0. 

Thus, it appears that the previous analysis is correct "at  the initial instant," but will be incorrect 
as the flow (and therefore the vorticity) evolves. We shall discuss this point further. 

The continuity equation [6] gives 

v,.~ = c~.~j + EukAk.j~ = dp,,~ = O. [11] 

The boundary condition on the surface of the sphere is 

"¢ini = vdin i, [12] 

where n~ is the unit exterior normal to the sphere. 
Thus, from [8] and [10], 

v i n  i = (9 , i n i  -.}- £qk A k ,  j n i  = V d in  i. [13] 

Lighthill (1956) (see Auton 1987) gives the velocity v~ as 

v; = f f f  G u ( x  k, X'k)~j(X'k, t )  d V ' ,  [14] 

where Auton gives the general form for the kernel Go.. The kernel represents the velocity field due 
to a point vortex, its image in the sphere and a line vortex in the sphere. From Lighthill's form, 
it is easily seen that 

Thus, 

so that 

at I x - - x d l = R .  

G ! / ( X k , X ' k ) n i = O  on I X - - X d l = R .  [15] 

v ; n , = 0  [161 

c~. ~ni = vdini [17] 
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Far from the sphere the velocity should approach the undisturbed fluid velocity, so that 

lim dp.i = Voi + euxj [18] 

and 

lim Ak=0 .  [19] 

The velocity potential is then given by 

,{ } 
4) = -v~,(x~- x.,) g [ ( x j  - x,)(xj - x , ) ]  ~l~ 

+(Voi + x e e o ) ( N  - x , )  1 + [(xj - x e ) ( x j  - xaj)] 3/~ 

+ ½ ( x , -  xdi)eij(xj - x , )  1 + . [20] 
[(xj  - x , )  (x j  - x , ) ]  3/2 

Equation [20] is exactly the same as the velocity potential derived previously ([40]; Drew & Lahey 
1987). 

Now it is clear how to obtain the velocity field vi from the initial and boundary conditions. First, 
the potential part is given for all times in terms of  the boundary conditions by [20]. If  the vorticity 
is known at all spatial points, at a given time, the rotational part of the velocity, v~ can be obtained 
from [14]. The vorticity evolves according to [10]. This differential equation gives d~i/c3t in terms 
of  ~ and vi. This is a differential equation for the vorticity, which has the added complication that 
it involves a spatial integral of  the unknown function. Even so, it could be used to obtain a 
numerical approximation to the solution at discrete time intervals. We further note that the 
equation is conservative. Thus, there is no need to prescribe boundary conditions on the sphere 
surface, since that it a material surface. Boundary conditions are needed at infinity where no 
perturbation vorticity enters the flow domain. Thus, in theory, the velocity is determined from the 
boundary conditions at infinity and at Ix - x ~ l =  R. 

To find the force on the sphere, we note that the force is given by 

= .f.lsPn~ dS.  [21] F, 

We proceed as in the Drew & Lahey (1987), although the definitions are slightly different. We define 

/5 = P + ck ,t + ½dp ,kcb,k -- ½oaa(x 2 + x~). [22] 
Pc 

Note that 
t / t t t - P . i  = vi.t + ( • . j v i ) . j +  (~b.ivj).j + (vi v j ) . j +  2EijkOgyp.k + 2(09kAk6 o -- ooiAj).j. [23] 

If  we take ( ).j of  [23], we have 

- /5.ii = 2(49.jv;).ji + (v; v;).ji .  [24] 

The boundary condition on Ix - x 0 [  = R is 

- n i / s  e = ni(ck.,v~),j + n i (v ;v j ) . j  + 2*ijkn, Ogj~.k + 2ni(oJkAk6~ -- oJ,Aj),i. [25] 

If v; and A~ are negligible, then/5 is the same as Drew & Lahey's (1987) [12], [19], [20] and [21]. 
From [14], we see that if ~ = 0 then v ' =  0. Thus, at the initial instant, the previous result holds. 
The previous result is approximately true when ~ is sufficiently small. For example, Auton (1987) 
calculates the perturbations to the velocity field due to a small rotation far from the sphere. The 
smallness that he assumes is sufficient for our analysis in the case that there are no fluid 
accelerations. However, we see from [10] that, in general, a perturbation vorticity that is initially 
zero will grow to be comparable to the mean fluid vorticity 09 in a time of  order R / U ,  where U 
is a velocity scale for the relative motion. We further note that Auton's result breaks down under 
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the same conditions, i.e. when the vorticity is no longer small. Thus, the result of Drew & Lahey 
(1987) is equivalent to Auton's, in the special case of small vorticity. Furthermore, the present 
analysis shows the conditions under which both analyses break down. 

3. CONCLUSION 

Proceeding as in Drew & Lahey (1987) we obtain [45] of that paper, except now it is recognized 
that the expression is valid only for small vorticity. In this case, the combined virtual mass and 
lift forces are given by 

4 3 FDo v* DdVd*" (V*l- V* I)(V* -- V*)I 
~ R  p L Dt Dt di. ~" [26] 

As was noted previously, this combination of terms is objective, while the individual parts of it 
are not. 

It is hoped that the error made in the previous paper (Drew & Lahey 1987) has not led to any 
confusion. In any event, this paper shows in what sense the final results and conclusions are valid, 
namely they are only approximately valid, as long as the fluid vorticity is small. 

We note that the analysis presented here, involving an exact solution for the irrotational part 
of the flow and rigid body rotation as the approximate solution to the rotational part, is simpler 
than that given by Auton (1987), where a perturbation analysis is needed to compute the force. 
This is analogous to the situation encountered in calculating inertial effects in creeping flow, where 
the solution for inertialess flow around a body can be used in an integral to obtain an 
approximation for the inertial force (Brenner 1961; Brenner & Cox 1964). 
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